Few-shot object detection アルゴリズムを用いた特徴的 な構造を有するクレータ認識の試み

田中智(宇宙科学研究所)、横矢直人(東大)、大竹真紀子(会津大)、 小野寺圭祐(東大)、出村裕英(会津大)、森川恵海(東大)、 今川裕喜(東大)

はじめに:アポロミッションによる月震観測

- 1969-1977の8年間で12000以上のイベントを観測
- ・ 衝突由来と推定されているのは1743イベント

アポロ着陸地点 (黄色が月震計設置地点)

Туре	Event Number		
Deep Moonquake	7245		
Shallow Moonquake	28		
Meteoroid Impact	1743		
Artificial Impact	9		
Unclassified	3533		
Total	12558		

観測されたイベント

月震計設置状況(アポロ14号)

- 衝突イベントにともなうクレータが検出されたのは、ブースターなど人工物を落下させたもののみで自然イベントで生じたクレーターは特定されていない
- インパクトイベントにともなうクレーターが同定されれば、衝突物理(エネルギー分配)、 内部構造推定の精密化が期待できる
- LRO (LROC)データを用いて運用期間中に生成されたクレータが検出 (Speyerer et al.,2016) され、特徴的な構造が存在することが示された
- このような特徴はアポロ時代の人工物落下クレータにも見られる

インパクト起源の月震

新しく生成されたクレータの特徴 (Speyerer et al.,2016)

- 衝突イベントにともなうクレータが検出されたのは、ブースターなど人工物を落下させたもののみで自然イベントで生じたクレーターは特定されていない
- インパクトイベントにともなうクレーターが同定されれば、衝突物理(エネルギー分配)、 内部構造推定の精密化が期待できる
- LRO (LROC)データを用いて運用期間中に生成されたクレータが検出 (Speyerer et al.,2016) され、特徴的な構造が存在することが示された
- このような特徴はアポロ時代の人工物落下クレータにも見られる

新しく生成されたクレータの特徴 (Speyerer et al.,2016)

研究のモティベーション

- 新しく生成されたクレーターの特徴(顔)を学習させ、単画像のみでも識別できるのではないか?
- 「顔認識」などで使われているアルゴリズムが適用できるので はないか?
- このテクニックでアポロ地震観測で得られたインパクトクレー タを特定できないだろうか?

研究フロー図

A:教師データの抽出

[Speyerer et al. 2016]

- Investigated 6.6% of the lunar surface
- Detected 222 new impact craters
- Found 33% more craters than NPF predict

@Elecnor Deimos

A:教師データの抽出

- Speyerer et al(2016)と基本的には同様に、2枚の写真を比較することで検出
- Temporal ペア作成プログラムを独自に開発
- 検出条件については先行研究をベースにいくつかの条件を付加
- 先行研究で検出したクレータ付近(緯度経度で±1度)を探索

Figure 2.16: Threshold processing Before NAC image: M1119014742LC, After NAC image: M1149637354LC

151地点のクレーター検出に成功した

検出成功例

研究フロー図

B':新クレータの学習評価

- 物体検出で比較的ポピュラーなYOLOv4、SSD512を適用した。
- 教師データ:39データ(21)

Loss:正解値と予測値との ずれの大きさ ->両者とも学習がすすむに つれて低下

mAP:mean value of average precision ->不安定な挙動

	Detection success	Detection failure	Detection success rate
SSD	347	1213	22.2%
YOLOv4	416	37	91.8%

YOLOv4が優位な結果

B':学習の検証 (YOLOv4の場合)

- (a) アポロ16号ブースタ衝突時時に生成したクレータ
- (b) アポロ15号撮像-NAC画像の差分から検出された自然クレータ、
- (c) Ranger 7 号衝突のクレータの3つを検証用画像として用いた

(a) False negative 誤検出 (b) True positive 正しく検出 (c) True positive 正しく検出

B:Few-Shot Object Detection (TFA)

Model Selection

• TFA: Two-stage Fine-tuning Approach (Wang, et al., 2020)

<u>TFAの特徴</u>

- YOLOと比較してベンチマークが ハイスコア
- GitHubを通じて一般ユーザーに公表
- 我々のデータセットI/Fが容易

Stage I: Base training

Stage II: Few-shot fine-tuning

12

B:Experiments

Pascal VOC Datasets

• Standardised image data sets for object class recognition

Used Data

- take care about base and novel ratio (1 novel and 3 base)
- 3 Base + 1 Novel (New Crater)
- 15 Base + 5 Novel (New Crater included)
- 10-shot Learning
- 10 Training data + 3 Validation data / 21

Stage I: Base training

B':Results (mAP)

Base Data

aeroplane	bicycle	boat	bottle	car	cat	chair	diningtable
71.822	74.499	43.472	63.224	81.946	83.304	50.618	48.104
dog	horse	person	pottedplant	sheep	train	tvmonitor	
73.328	77.218	79.647	38.336	68.345	69.307	74.631	

• Novel Data

bird	bus	cow	motorbike	newcrater	Same Result as "3 Base + 1 Novel"
35.247	58.127	52.919	55.312	0.000	

B':Discussion

Cause of the results

- The model couldn't extract features from crater data
 - \rightarrow RPN didn't propose crater location
 - \rightarrow Box Classifier didn't recognize as a crater

→プログラム解析をして各々の

アウトプットを調査

To get better results

- Use normal crater data as base data
- ->YOLO4で選定したデータを教師データとして作成中
- Add negative samples

研究フロー図

C:新クレータの検出(byYOLO4)

3

(1)

2

Im	pact (Ycar,Day)	Latitude	Longitude	Mcan Magnitude b	D(m)(min/max)
	71, 143	88.30 ± 0.07	16.63 ± 0.07	0.44	9.06/11.48
	or	99.02 ± 0.08	-17.69 ± 0.06		
(C)	71, 163	55.40 ± 0.17	30.08 ± 0.51	0.62	46.02/58.35
	or	128.15 ± 0.17	-39.58 ± 0.48		
85	71, 293	52.73 ± 4.20	40.52 ± 7.11	0.10	20.73/26.29
	72, 134	89.00 ± 0.59	$\textbf{-16.31} \pm \textbf{0.57}$	0.43	34.38/43.60
	72, 190	54.02 ± 13.00	135.03 ± 16.38	0.51	38.87/49.20
82. 13	72, 213	55.52 ± 5.83	3.08 ± 5.49	0.29	11.40/14.45
	72, 324	24.24 ± 2.19	27.88 ± 5.87	0.41	9.48/12.02
60 80	73, 113	144.57 ± 7.22	31.41 ± 8.74	0.08	15.73/19.95
	73, 262	166.96 ± 0.20	$\textbf{-70.12} \pm \textbf{2.07}$	-0.33	10.72/13.59
50 50	74, 325	97.57 ± 0.58	25.02 ± 0.74	-0.28	11.57/14.68
50	74, 349	90.72 ± 1.63	-9.80 <u>1</u> 1.07	-0 <mark>.68</mark>	6.27/7.95
	75, 102	86.78 ± 0.92	38.13 ± 1.54	0.30	26.17/35.72
62	75, 124	$\underline{128.17 \pm 3.64}$	-118.96 ± 5.20	0.64	47.45/60.17
	76, 13	131.82 ± 2.28	79 1 1 + 3 5 9	0.45	35.46/44.96
10. 35	76, 25	93.21 ± 3.35	-72.99 ± 2.62	0,55	41.33/52.41
	76, 137	100.42 ± 13.80	15.30 ± 4.49	-0.25	12.12/15.97
	76, 319	76.26 ± 6.54	-89.84 + 8.83	0.64	47.45/60.17
82	77, 107	113.17 ± 0.11	-70.27 ± 3.50	0.10	20.73/20.29

アポロ月震波形から決定された大規模クレータ(Oberst 1989)

研究フロー図

E:新クレータの妥当性検証(1)

• アルベドの比較(角度依存性)

$$\begin{split} I/F &= A_{eq}(\alpha) D(\alpha, i, e) \\ &= m e^{-\mu \alpha} \times \frac{2 cosi}{cosi + cose} \end{split}$$

Aeq :equigonal albedoD :Disk functioinm, α :parameters

	m_{eruler}	m_{bg}	m_{ratio}
new(d:18m)	0.11 ± 0.02	0.07 ± 0.00	1.523 ± 0.241
old(d:13m)	0.07 ± 0.00	0.07 ± 0.00	1.026 ± 0.070

(a) A fresh crater with a di (b) A old crater with a di ameter of 18m (NAC image: ameter of 13m (NAC image:
M1149673670LC)
M1149673670LC)

(s) Fitted with old crater(13m) data

E:新クレータの妥当性検証(1)

- アルベドの比較(角度依存性)
 - クレータの大きさに関係なく概ね一定

(a) A fresh crater with a diameter of ~34m (NAC image: M1149637354LC)

(b) Fitted with new crater(\sim 34m) data

(a) A fresh crater with a diameter of 18m (NAC image: M1149673670LC)

	m _{crater}	m_{bg}	m_{ratio}
ncw(d:~34m)	$0.11\pm\ 0.02$	0.08 ± 0.00	1.449 ± 0.218
new(d:18m)	$0.11\pm\ 0.02$	0.07 ± 0.00	1.523 ± 0.241

E: 新クレータの妥当性検証(1)

• 抽出したクレータについて、LROCで見出された同サイズの新クレータと比較

Image of the detected crater in Place2 NAC image: M188443594RC

	m _{crater}	m_{bg}	m _{ratio}
new(d:~34m)	0.11 ± 0.02	0.08 ± 0.00	1.449 ± 0.218
place .1	0.09 ± 0.02	0.07 ± 0.01	1.195 ± 0.293

アルベドによる評価 ー>「新クレータ」を誤差範囲内で調和的

E: 新クレータの妥当性検証(2)

• 抽出したクレータレイの距離に対する減衰を評価

old

Mean squared error for each of the three craters

E:新クレータの妥当性検証(2)

• 抽出したクレータについて、LROCで見出された同サイズの新クレータと比較

クレータから径方向のクレータレイの減衰も 「新クレータ」と誤差範囲内で調和的

半径のn倍の地点

研究フロー図

D:1971-DOY163に観測された衝突月震

D:初動の読み取り(東西成分)

۰

D:初動の読み取り(南北成分)

震源が観測点から見て北側にあると考えられる。

★ 会 Oberst (1989)では, Place①の衝突月震の震源は南北の二つの候補が存在したが, 初動の符号につ いて解析を行った結果, 震源が北西方向にある可能性が高いことがわかった。

総括

- 画像認識技術を用いて生成後新しい月面クレータの認識を試みた
- YORO4で「新クレータ」認識に成功したが、十分な性能であるとは 言えない
- FSODの実装には西毛したがではクレータ認識が成功しておらず、 reference (Base)データの再構築が必要
- 画像認識でアポロ地震観測で推定されたクレータの特定を試み、候補クレータが選定された(YORO4)
- クレータの特徴や地震学的な知見から1個に絞り込むことに成功した例もあるが、多くは複数個選定され、それ以上の選別は困難
- 教師データの増加やアルゴリズムの改良で画像認識技術を用いた 「新」クレータ検出の可能性はある
- 差分画像を用いた新クレータ検出のS/Wも独自に開発